北京锦绣发商贸有限公司

数学八字形定理 神奇的模型数学(21)---万能的“八字形”

发布时间:2024-11-24 09:11:46

神奇的模型数学(21)---万能的“八字形”

神奇的模型数学(21)---万能的“八字形”

问题提出:

如图,在3×3的正方形网格中标出了∠1和∠2.则∠1+∠2=___.

首先让我们来看一个大家再熟悉不过的题:

如图,已知五角星ABCDE,试求∠A+∠B+∠C+∠D+∠E的度数。

∵∠ENM是△ACN的外角,

∴∠ENM=∠A+∠C,(三角形的外角等于不相邻的两个内角的和)

同理可得,∠EMN=∠B+∠D.

∵∠MNE+∠NME+∠E=180°,

∴∠A+∠B+∠C+∠D+∠E=180°

在n年前我的老师是这样教我们的,若干年后正能良传承了老师的衣钵,我也一直是这样教自己的学生.想必大家与我一样认为这就是唯一的解法.这的确是一种好的数学方法,运用了转化的数学思想,把要求的"五角星”的五个角的和集中到一个三角形中.也许就是因为这种解法太过完美了,一直把我们的思维禁锢其中,以致于一丁点都没有去思考过有没有更巧妙的方法.一次正能良在做类似的题的时候突然眼前一亮,发现了一个对于解决角度和的问题万能的数学模型---"八字形".

数学模型:

内涵:

∠A+∠B=∠C+∠D.

事实上,根据三角形的外角等于不相邻的两个内角的和可得,∠A+∠B=∠1,∠C+∠D=∠1,所以有∠A+∠B=∠C+∠D.

下面我们用万能的“八字形”来解决五角星问题:

解:如图,连接CD,

∵∠B+∠E=∠1+∠2,

∴∠A+∠B+∠C+∠D+∠E

=∠A+∠1+∠ACE+∠2+∠ADB

=∠A+∠ACD+∠ADC

=180°.

问题解决:

如图,在3×3的正方形网格中标出了∠1和∠2.则∠1+∠2=___.

解:连AE,BE,

∵AE∥CD,

∴∠2=∠3.

易知,△ABE为等腰直角三角形,∠AEB=90°,

又∠ACB=90°,

由“八字形”数学模型知,∠3=∠4

∴∠2=∠4.

∴∠1+∠2=∠1+∠4=∠ABE=45°

巩固练习:

1.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=( ).

A. 540° B. 720° C. 360° D. 900°

2.如图,已知∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F= .

3.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I的度数.

敬请关注:正能良60038993.

三角形中的十大模型及解析(五)八字型模型

嗨!友友们好!今天咱们一起学习《三角形》中的十大模型(五):八字型模型。八字型模型考查了三角形内角和定理,三角形的外角和定理及其推论。

口诀:相对两角之和相等。下面我们来看第(1)题,通过推理论证我们得出了以上结论。此题考查了三角形内角和定理,八字型的性质和应用。

如果你还不懂,请看2022.8.24号视频。

先做后对答案效果好哦!

再来看看第二题,它的前两问和第一题类似,第三问拓展了,考查了八字型模型的性质,三角形内角和定理,角平分线性质等等。开拓了思维视野,提高了创新能力。

先做后对答案效果好哦!

第一小题是证明八字型模型,第一题已经讲过,略。

第三题是八字型模型的拓展应用。第一问的难点在于书写理由。第二问简单,利用四边形内角和,八字型模型即可得出360°。第三问考查了全等三角形的性质与判定。

第二问略,360°。

你学会了吗?关注老师不迷路,别忘了点赞评论哟!我们下期再见!拜拜!

相关问答

三角形 八字形定理 ?

8字型三角形的规律是除对顶的角相等外,另外两个角的和相等。8字型三角形的规律是除对顶的角相等外,另外两个角的和相等。

八字三角形特点?

八字形中的两个三角形有一对角互为知对顶角,由于对顶角相等,这一对对角一定是相等的。但是这两个三角形中的其他两对对角并不一定相等。只有这两个三角形相似...

什么是八字倒角?

八字形对顶角一定相等,但对角不一定相等。八字形中的两个三角形有一对角互为知对顶角,由于对顶角相等。常见的三个角分别对应相等的一种情形是对顶角所对的那...

8字形四点共圆?

根据圆内四边形的一些定理,它个逆定理也可判定四点共圆。1、圆的内接四边形的两对角和是180度,反之,如果四边形的两对角和是180,那么四点共圆。2、在圆里,...

如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图...

[回答](1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠C+∠B,故本选项正确;(2)①线段AB、CD相交于点O,形成...

展开全部内容